Exploration of the role of heat activation in enhancing serpentine carbon sequestration reactions.
نویسندگان
چکیده
As compared with other candidate carbon sequestration technologies, mineral carbonation offers the unique advantage of permanent disposal via geologically stable and environmentally benign carbonates. The primary challenge is the development of an economically viable process. Enhancing feedstock carbonation reactivity is key. Heat activation dramatically enhances aqueous serpentine carbonation reactivity. Although the present process is too expensive to implement, the materials characteristics and mechanisms that enhance carbonation are of keen interest for further reducing cost. Simultaneous thermogravimetric and differential thermal analysis (TGA/DTA) of the serpentine mineral lizardite was used to isolate a series of heat-activated materials as a function of residual hydroxide content at progressively higher temperatures. Their structure and composition are evaluated via TGA/DTA, X-ray powder diffraction (including phase analysis), and infrared analysis. The meta-serpentine materials that were observed to form ranged from those with longer range ordering, consistent with diffuse stage-2 like interlamellar order, to an amorphous component that preferentially forms at higher temperatures. The aqueous carbonation reaction process was investigated for representative materials via in situ synchrotron X-ray diffraction. Magnesite was observed to form directly at 15 MPa CO2 and at temperatures ranging from 100 to 125 degrees C. Carbonation reactivity is generally correlated with the extent of meta-serpentine formation and structural disorder.
منابع مشابه
Enhancing Process Kinetics for Mineral Carbon Sequestration
The current low-cost process for mineral carbonation involves the direct carbonation of a slurry of magnesium or calcium silicate mineral with supercritical CO2. The process is currently limited by the slow reaction kinetics of the carbonation reactions, and in particular the slow dissolution rates of the silicates in weakly acidic conditions. Enhancing the dissolution rate in weakly acidic con...
متن کاملEnhancing serpentine dissolution kinetics for mineral carbon dioxide sequestration
Mineral carbon dioxide sequestration binds carbon dioxide by reacting it with magnesium silicate minerals to form solid magnesium carbonates that are ready for disposal. Research onmineral sequestration has focused on enhancing process kinetics in aqueous processing schemes. High costs of these processes are associatedwithmineral processing, such as ultrafine grinding, or the consumption of aci...
متن کاملEstimation of Soil Carbon Sequestration Rate in Steppes (Case Study: Saveh Rudshur Steppes)
Since Renaissance, the natural ecosystems have fallen into a complete state ofdisarray due to the rise in the amount of carbon dioxide. Soil, the unsparing stuff, is one of themajor sources of carbon storage, and plays a paramount role in the global equilibrium ofcarbon as well as carbon sequestration. Given that Iran is benefiting from vast steppes, therate of carbon sequestration in them dese...
متن کاملCarbon sequestration in sugarcane plant and soil with different cultivation systems
Sugarcane (Saccharum officinarum L.) is a multi-purpose crop, mainly planted in South-western (SW) parts of Iran. However, the capability of sugarcane farms to sequestrate carbon into soil and plant is not well documented. In this research, the carbon sequestration in sugarcane plant and soil in a ratooning traditional cultivation system at the Amirkabir Sugarcane Agro-Industry Complex...
متن کاملIdentifying Carbon Sequestration Hotspots in Semiarid Rangelands (Case study: Baghbazm region of Bardsir city, Kerman province)
Carbon sequestration in rangeland ecosystems has been identified as a suitable strategy to offset greenhouse gas emissions that information of carbon sequestration hotspots is a good tool to improve rangeland management. Objectives for this study were to assessment potential carbon sequestration in various rangeland types, to identify carbon sequestration hotspots and to study the effective fact...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental science & technology
دوره 38 24 شماره
صفحات -
تاریخ انتشار 2004